Metamath Proof Explorer


Theorem cncfmptid

Description: The identity function is a continuous function on CC . (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 17-May-2016)

Ref Expression
Assertion cncfmptid STTxSx:ScnT

Proof

Step Hyp Ref Expression
1 cncfss STTScnSScnT
2 eqid TopOpenfld=TopOpenfld
3 2 cnfldtopon TopOpenfldTopOn
4 sstr STTS
5 resttopon TopOpenfldTopOnSTopOpenfld𝑡STopOnS
6 3 4 5 sylancr STTTopOpenfld𝑡STopOnS
7 6 cnmptid STTxSxTopOpenfld𝑡SCnTopOpenfld𝑡S
8 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
9 2 8 8 cncfcn SSScnS=TopOpenfld𝑡SCnTopOpenfld𝑡S
10 4 4 9 syl2anc STTScnS=TopOpenfld𝑡SCnTopOpenfld𝑡S
11 7 10 eleqtrrd STTxSx:ScnS
12 1 11 sseldd STTxSx:ScnT