Metamath Proof Explorer


Theorem cndrng

Description: The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Assertion cndrng fldDivRing

Proof

Step Hyp Ref Expression
1 cnfldbas =Basefld
2 1 a1i =Basefld
3 cnfldmul ×=fld
4 3 a1i ×=fld
5 cnfld0 0=0fld
6 5 a1i 0=0fld
7 cnfld1 1=1fld
8 7 a1i 1=1fld
9 cnring fldRing
10 9 a1i fldRing
11 mulne0 xx0yy0xy0
12 11 3adant1 xx0yy0xy0
13 ax-1ne0 10
14 13 a1i 10
15 reccl xx01x
16 15 adantl xx01x
17 recid2 xx01xx=1
18 17 adantl xx01xx=1
19 2 4 6 8 10 12 14 16 18 isdrngd fldDivRing
20 19 mptru fldDivRing