| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|
| 2 |
|
oveq1 |
|
| 3 |
1 2
|
eqeq12d |
|
| 4 |
|
oveq1 |
|
| 5 |
|
oveq1 |
|
| 6 |
4 5
|
eqeq12d |
|
| 7 |
|
oveq1 |
|
| 8 |
|
oveq1 |
|
| 9 |
7 8
|
eqeq12d |
|
| 10 |
|
oveq1 |
|
| 11 |
|
oveq1 |
|
| 12 |
10 11
|
eqeq12d |
|
| 13 |
|
oveq1 |
|
| 14 |
|
oveq1 |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
|
cnfldbas |
|
| 17 |
|
cnfld0 |
|
| 18 |
|
eqid |
|
| 19 |
16 17 18
|
mulg0 |
|
| 20 |
|
mul02 |
|
| 21 |
19 20
|
eqtr4d |
|
| 22 |
|
oveq1 |
|
| 23 |
|
cnring |
|
| 24 |
|
ringmnd |
|
| 25 |
23 24
|
ax-mp |
|
| 26 |
|
cnfldadd |
|
| 27 |
16 18 26
|
mulgnn0p1 |
|
| 28 |
25 27
|
mp3an1 |
|
| 29 |
|
nn0cn |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simpr |
|
| 32 |
30 31
|
adddirp1d |
|
| 33 |
28 32
|
eqeq12d |
|
| 34 |
22 33
|
imbitrrid |
|
| 35 |
34
|
expcom |
|
| 36 |
|
fveq2 |
|
| 37 |
|
eqid |
|
| 38 |
16 18 37
|
mulgnegnn |
|
| 39 |
|
nncn |
|
| 40 |
|
mulneg1 |
|
| 41 |
39 40
|
sylan |
|
| 42 |
|
mulcl |
|
| 43 |
39 42
|
sylan |
|
| 44 |
|
cnfldneg |
|
| 45 |
43 44
|
syl |
|
| 46 |
41 45
|
eqtr4d |
|
| 47 |
38 46
|
eqeq12d |
|
| 48 |
36 47
|
imbitrrid |
|
| 49 |
48
|
expcom |
|
| 50 |
3 6 9 12 15 21 35 49
|
zindd |
|
| 51 |
50
|
impcom |
|