Metamath Proof Explorer


Theorem cnfrrnsmf

Description: A function, continuous from the standard topology on the space of n-dimensional reals to the standard topology on the reals, is Borel measurable. Proposition 121D (b) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses cnfrrnsmf.x φXFin
cnfrrnsmf.j J=TopOpenmsup
cnfrrnsmf.k K=topGenran.
cnfrrnsmf.f φFJ𝑡domFCnK
cnfrrnsmf.b B=SalGenJ
Assertion cnfrrnsmf φFSMblFnB

Proof

Step Hyp Ref Expression
1 cnfrrnsmf.x φXFin
2 cnfrrnsmf.j J=TopOpenmsup
3 cnfrrnsmf.k K=topGenran.
4 cnfrrnsmf.f φFJ𝑡domFCnK
5 cnfrrnsmf.b B=SalGenJ
6 2 rrxtop XFinJTop
7 1 6 syl φJTop
8 7 3 4 5 cnfsmf φFSMblFnB