Description: A function, continuous from the standard topology on the space of n-dimensional reals to the standard topology on the reals, is Borel measurable. Proposition 121D (b) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnfrrnsmf.x | ||
| cnfrrnsmf.j | |||
| cnfrrnsmf.k | |||
| cnfrrnsmf.f | |||
| cnfrrnsmf.b | |||
| Assertion | cnfrrnsmf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfrrnsmf.x | ||
| 2 | cnfrrnsmf.j | ||
| 3 | cnfrrnsmf.k | ||
| 4 | cnfrrnsmf.f | ||
| 5 | cnfrrnsmf.b | ||
| 6 | 2 | rrxtop | |
| 7 | 1 6 | syl | |
| 8 | 7 3 4 5 | cnfsmf |