Metamath Proof Explorer


Theorem cnvdif

Description: Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion cnvdif AB-1=A-1B-1

Proof

Step Hyp Ref Expression
1 relcnv RelAB-1
2 difss A-1B-1A-1
3 relcnv RelA-1
4 relss A-1B-1A-1RelA-1RelA-1B-1
5 2 3 4 mp2 RelA-1B-1
6 eldif yxAByxA¬yxB
7 vex xV
8 vex yV
9 7 8 opelcnv xyAB-1yxAB
10 eldif xyA-1B-1xyA-1¬xyB-1
11 7 8 opelcnv xyA-1yxA
12 7 8 opelcnv xyB-1yxB
13 12 notbii ¬xyB-1¬yxB
14 11 13 anbi12i xyA-1¬xyB-1yxA¬yxB
15 10 14 bitri xyA-1B-1yxA¬yxB
16 6 9 15 3bitr4i xyAB-1xyA-1B-1
17 1 5 16 eqrelriiv AB-1=A-1B-1