Metamath Proof Explorer


Theorem cnvimassrndm

Description: The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm for subsets. (Contributed by AV, 18-Sep-2024)

Ref Expression
Assertion cnvimassrndm ranFAF-1A=domF

Proof

Step Hyp Ref Expression
1 ssequn1 ranFAranFA=A
2 imaeq2 A=ranFAF-1A=F-1ranFA
3 imaundi F-1ranFA=F-1ranFF-1A
4 2 3 eqtrdi A=ranFAF-1A=F-1ranFF-1A
5 cnvimarndm F-1ranF=domF
6 5 uneq1i F-1ranFF-1A=domFF-1A
7 cnvimass F-1AdomF
8 ssequn2 F-1AdomFdomFF-1A=domF
9 7 8 mpbi domFF-1A=domF
10 6 9 eqtri F-1ranFF-1A=domF
11 4 10 eqtrdi A=ranFAF-1A=domF
12 11 eqcoms ranFA=AF-1A=domF
13 1 12 sylbi ranFAF-1A=domF