Metamath Proof Explorer


Theorem coass

Description: Associative law for class composition. Theorem 27 of Suppes p. 64. Also Exercise 21 of Enderton p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997)

Ref Expression
Assertion coass ABC=ABC

Proof

Step Hyp Ref Expression
1 relco RelABC
2 relco RelABC
3 excom zwxCzzBwwAywzxCzzBwwAy
4 anass xCzzBwwAyxCzzBwwAy
5 4 2exbii wzxCzzBwwAywzxCzzBwwAy
6 3 5 bitr4i zwxCzzBwwAywzxCzzBwwAy
7 vex zV
8 vex yV
9 7 8 brco zABywzBwwAy
10 9 anbi2i xCzzAByxCzwzBwwAy
11 10 exbii zxCzzAByzxCzwzBwwAy
12 vex xV
13 12 8 opelco xyABCzxCzzABy
14 exdistr zwxCzzBwwAyzxCzwzBwwAy
15 11 13 14 3bitr4i xyABCzwxCzzBwwAy
16 vex wV
17 12 16 brco xBCwzxCzzBw
18 17 anbi1i xBCwwAyzxCzzBwwAy
19 18 exbii wxBCwwAywzxCzzBwwAy
20 12 8 opelco xyABCwxBCwwAy
21 19.41v zxCzzBwwAyzxCzzBwwAy
22 21 exbii wzxCzzBwwAywzxCzzBwwAy
23 19 20 22 3bitr4i xyABCwzxCzzBwwAy
24 6 15 23 3bitr4i xyABCxyABC
25 1 2 24 eqrelriiv ABC=ABC