Metamath Proof Explorer


Theorem relcnvtrg

Description: General form of relcnvtr . (Contributed by Peter Mazsa, 17-Oct-2023)

Ref Expression
Assertion relcnvtrg RelRRelSRelTRSTS-1R-1T-1

Proof

Step Hyp Ref Expression
1 cnvco RS-1=S-1R-1
2 cnvss RSTRS-1T-1
3 1 2 eqsstrrid RSTS-1R-1T-1
4 cnvco S-1R-1-1=R-1-1S-1-1
5 cnvss S-1R-1T-1S-1R-1-1T-1-1
6 sseq1 S-1R-1-1=R-1-1S-1-1S-1R-1-1T-1-1R-1-1S-1-1T-1-1
7 dfrel2 RelRR-1-1=R
8 7 biimpi RelRR-1-1=R
9 8 3ad2ant1 RelRRelSRelTR-1-1=R
10 dfrel2 RelSS-1-1=S
11 10 biimpi RelSS-1-1=S
12 11 3ad2ant2 RelRRelSRelTS-1-1=S
13 9 12 coeq12d RelRRelSRelTR-1-1S-1-1=RS
14 dfrel2 RelTT-1-1=T
15 14 biimpi RelTT-1-1=T
16 15 3ad2ant3 RelRRelSRelTT-1-1=T
17 13 16 sseq12d RelRRelSRelTR-1-1S-1-1T-1-1RST
18 17 biimpcd R-1-1S-1-1T-1-1RelRRelSRelTRST
19 6 18 syl6bi S-1R-1-1=R-1-1S-1-1S-1R-1-1T-1-1RelRRelSRelTRST
20 4 5 19 mpsyl S-1R-1T-1RelRRelSRelTRST
21 20 com12 RelRRelSRelTS-1R-1T-1RST
22 3 21 impbid2 RelRRelSRelTRSTS-1R-1T-1