Metamath Proof Explorer


Theorem cofidval

Description: The property " <. F , G >. is a section of <. K , L >. " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofidval.i I = id func D
cofidval.b B = Base D
cofidval.f φ F D Func E G
cofidval.k φ K E Func D L
cofidval.o φ K L func F G = I
cofidval.h H = Hom D
Assertion cofidval φ K F = I B x B , y B F x L F y x G y = z B × B I H z

Proof

Step Hyp Ref Expression
1 cofidval.i I = id func D
2 cofidval.b B = Base D
3 cofidval.f φ F D Func E G
4 cofidval.k φ K E Func D L
5 cofidval.o φ K L func F G = I
6 cofidval.h H = Hom D
7 2 3 4 cofuval2 φ K L func F G = K F x B , y B F x L F y x G y
8 3 funcrcl2 φ D Cat
9 1 2 8 6 idfuval φ I = I B z B × B I H z
10 5 7 9 3eqtr3d φ K F x B , y B F x L F y x G y = I B z B × B I H z
11 2 fvexi B V
12 resiexg B V I B V
13 11 12 ax-mp I B V
14 11 11 xpex B × B V
15 14 mptex z B × B I H z V
16 13 15 opth2 K F x B , y B F x L F y x G y = I B z B × B I H z K F = I B x B , y B F x L F y x G y = z B × B I H z
17 10 16 sylib φ K F = I B x B , y B F x L F y x G y = z B × B I H z