Metamath Proof Explorer


Theorem cofmpt

Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017)

Ref Expression
Hypotheses cofmpt.1 φF:CD
cofmpt.2 φxABC
Assertion cofmpt φFxAB=xAFB

Proof

Step Hyp Ref Expression
1 cofmpt.1 φF:CD
2 cofmpt.2 φxABC
3 eqidd φxAB=xAB
4 1 feqmptd φF=yCFy
5 fveq2 y=BFy=FB
6 2 3 4 5 fmptco φFxAB=xAFB