Metamath Proof Explorer


Theorem coi1

Description: Composition with the identity relation. Part of Theorem 3.7(i) of Monk1 p. 36. (Contributed by NM, 22-Apr-2004)

Ref Expression
Assertion coi1 RelAAI=A

Proof

Step Hyp Ref Expression
1 relco RelAI
2 vex xV
3 vex yV
4 2 3 opelco xyAIzxIzzAy
5 vex zV
6 5 ideq xIzx=z
7 equcom x=zz=x
8 6 7 bitri xIzz=x
9 8 anbi1i xIzzAyz=xzAy
10 9 exbii zxIzzAyzz=xzAy
11 breq1 z=xzAyxAy
12 11 equsexvw zz=xzAyxAy
13 10 12 bitri zxIzzAyxAy
14 4 13 bitri xyAIxAy
15 df-br xAyxyA
16 14 15 bitri xyAIxyA
17 16 eqrelriv RelAIRelAAI=A
18 1 17 mpan RelAAI=A