Metamath Proof Explorer


Theorem coiun1

Description: Composition with an indexed union. Proof analgous to that of coiun . (Contributed by RP, 20-Jun-2020)

Ref Expression
Assertion coiun1 xCAB=xCAB

Proof

Step Hyp Ref Expression
1 relco RelxCAB
2 reliun RelxCABxCRelAB
3 relco RelAB
4 3 a1i xCRelAB
5 2 4 mprgbir RelxCAB
6 eliun wzxCAxCwzA
7 df-br wxCAzwzxCA
8 df-br wAzwzA
9 8 rexbii xCwAzxCwzA
10 6 7 9 3bitr4i wxCAzxCwAz
11 10 anbi2i yBwwxCAzyBwxCwAz
12 r19.42v xCyBwwAzyBwxCwAz
13 11 12 bitr4i yBwwxCAzxCyBwwAz
14 13 exbii wyBwwxCAzwxCyBwwAz
15 rexcom4 xCwyBwwAzwxCyBwwAz
16 14 15 bitr4i wyBwwxCAzxCwyBwwAz
17 vex yV
18 vex zV
19 17 18 opelco yzxCABwyBwwxCAz
20 eliun yzxCABxCyzAB
21 17 18 opelco yzABwyBwwAz
22 21 rexbii xCyzABxCwyBwwAz
23 20 22 bitri yzxCABxCwyBwwAz
24 16 19 23 3bitr4i yzxCAByzxCAB
25 1 5 24 eqrelriiv xCAB=xCAB