Metamath Proof Explorer


Theorem colinearalglem3

Description: Lemma for colinearalg . Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013)

Ref Expression
Assertion colinearalglem3 A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N B i A i C j A j = B j A j C i A i i 1 N j 1 N A i C i B j C j = A j C j B i C i

Proof

Step Hyp Ref Expression
1 colinearalglem2 A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N B i A i C j A j = B j A j C i A i i 1 N j 1 N C i B i A j B j = C j B j A i B i
2 colinearalglem2 B 𝔼 N C 𝔼 N A 𝔼 N i 1 N j 1 N C i B i A j B j = C j B j A i B i i 1 N j 1 N A i C i B j C j = A j C j B i C i
3 2 3comr A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N C i B i A j B j = C j B j A i B i i 1 N j 1 N A i C i B j C j = A j C j B i C i
4 1 3 bitrd A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N B i A i C j A j = B j A j C i A i i 1 N j 1 N A i C i B j C j = A j C j B i C i