Metamath Proof Explorer


Theorem colinearalglem3

Description: Lemma for colinearalg . Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013)

Ref Expression
Assertion colinearalglem3 A𝔼NB𝔼NC𝔼Ni1Nj1NBiAiCjAj=BjAjCiAii1Nj1NAiCiBjCj=AjCjBiCi

Proof

Step Hyp Ref Expression
1 colinearalglem2 A𝔼NB𝔼NC𝔼Ni1Nj1NBiAiCjAj=BjAjCiAii1Nj1NCiBiAjBj=CjBjAiBi
2 colinearalglem2 B𝔼NC𝔼NA𝔼Ni1Nj1NCiBiAjBj=CjBjAiBii1Nj1NAiCiBjCj=AjCjBiCi
3 2 3comr A𝔼NB𝔼NC𝔼Ni1Nj1NCiBiAjBj=CjBjAiBii1Nj1NAiCiBjCj=AjCjBiCi
4 1 3 bitrd A𝔼NB𝔼NC𝔼Ni1Nj1NBiAiCjAj=BjAjCiAii1Nj1NAiCiBjCj=AjCjBiCi