Metamath Proof Explorer


Theorem compab

Description: Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion compab Vz|φ=z|¬φ

Proof

Step Hyp Ref Expression
1 nfcv _zV
2 nfab1 _zz|φ
3 1 2 nfdif _zVz|φ
4 nfab1 _zz|¬φ
5 3 4 cleqf Vz|φ=z|¬φzzVz|φzz|¬φ
6 abid zz|φφ
7 6 notbii ¬zz|φ¬φ
8 velcomp zVz|φ¬zz|φ
9 abid zz|¬φ¬φ
10 7 8 9 3bitr4i zVz|φzz|¬φ
11 5 10 mpgbir Vz|φ=z|¬φ