Metamath Proof Explorer


Theorem concl

Description: A natural transformation from a constant functor of an object maps to morphisms whose domain is the object. Therefore, the range of the second component of a cone are morphisms with a common domain. (Contributed by Zhi Wang, 13-Nov-2025)

Ref Expression
Hypotheses islmd.l L = C Δ func D
islmd.a A = Base C
islmd.n N = D Nat C
islmd.b B = Base D
concl.k K = 1 st L X
concl.x φ X A
concl.y φ Y B
concl.h H = Hom C
concl.r φ R K N F
Assertion concl φ R Y X H 1 st F Y

Proof

Step Hyp Ref Expression
1 islmd.l L = C Δ func D
2 islmd.a A = Base C
3 islmd.n N = D Nat C
4 islmd.b B = Base D
5 concl.k K = 1 st L X
6 concl.x φ X A
7 concl.y φ Y B
8 concl.h H = Hom C
9 concl.r φ R K N F
10 3 9 nat1st2nd φ R 1 st K 2 nd K N 1 st F 2 nd F
11 3 10 4 8 7 natcl φ R Y 1 st K Y H 1 st F Y
12 3 10 natrcl3 φ 1 st F D Func C 2 nd F
13 12 funcrcl3 φ C Cat
14 12 funcrcl2 φ D Cat
15 1 13 14 2 6 5 4 7 diag11 φ 1 st K Y = X
16 15 oveq1d φ 1 st K Y H 1 st F Y = X H 1 st F Y
17 11 16 eleqtrd φ R Y X H 1 st F Y