Metamath Proof Explorer


Theorem concl

Description: A natural transformation from a constant functor of an object maps to morphisms whose domain is the object. Therefore, the range of the second component of a cone are morphisms with a common domain. (Contributed by Zhi Wang, 13-Nov-2025)

Ref Expression
Hypotheses islmd.l
|- L = ( C DiagFunc D )
islmd.a
|- A = ( Base ` C )
islmd.n
|- N = ( D Nat C )
islmd.b
|- B = ( Base ` D )
concl.k
|- K = ( ( 1st ` L ) ` X )
concl.x
|- ( ph -> X e. A )
concl.y
|- ( ph -> Y e. B )
concl.h
|- H = ( Hom ` C )
concl.r
|- ( ph -> R e. ( K N F ) )
Assertion concl
|- ( ph -> ( R ` Y ) e. ( X H ( ( 1st ` F ) ` Y ) ) )

Proof

Step Hyp Ref Expression
1 islmd.l
 |-  L = ( C DiagFunc D )
2 islmd.a
 |-  A = ( Base ` C )
3 islmd.n
 |-  N = ( D Nat C )
4 islmd.b
 |-  B = ( Base ` D )
5 concl.k
 |-  K = ( ( 1st ` L ) ` X )
6 concl.x
 |-  ( ph -> X e. A )
7 concl.y
 |-  ( ph -> Y e. B )
8 concl.h
 |-  H = ( Hom ` C )
9 concl.r
 |-  ( ph -> R e. ( K N F ) )
10 3 9 nat1st2nd
 |-  ( ph -> R e. ( <. ( 1st ` K ) , ( 2nd ` K ) >. N <. ( 1st ` F ) , ( 2nd ` F ) >. ) )
11 3 10 4 8 7 natcl
 |-  ( ph -> ( R ` Y ) e. ( ( ( 1st ` K ) ` Y ) H ( ( 1st ` F ) ` Y ) ) )
12 3 10 natrcl3
 |-  ( ph -> ( 1st ` F ) ( D Func C ) ( 2nd ` F ) )
13 12 funcrcl3
 |-  ( ph -> C e. Cat )
14 12 funcrcl2
 |-  ( ph -> D e. Cat )
15 1 13 14 2 6 5 4 7 diag11
 |-  ( ph -> ( ( 1st ` K ) ` Y ) = X )
16 15 oveq1d
 |-  ( ph -> ( ( ( 1st ` K ) ` Y ) H ( ( 1st ` F ) ` Y ) ) = ( X H ( ( 1st ` F ) ` Y ) ) )
17 11 16 eleqtrd
 |-  ( ph -> ( R ` Y ) e. ( X H ( ( 1st ` F ) ` Y ) ) )