Metamath Proof Explorer


Theorem connhmph

Description: Connectedness is a topological property. (Contributed by Jeff Hankins, 3-Jul-2009)

Ref Expression
Assertion connhmph JKJConnKConn

Proof

Step Hyp Ref Expression
1 hmph JKJHomeoK
2 n0 JHomeoKffJHomeoK
3 eqid J=J
4 eqid K=K
5 3 4 hmeof1o fJHomeoKf:J1-1 ontoK
6 f1ofo f:J1-1 ontoKf:JontoK
7 5 6 syl fJHomeoKf:JontoK
8 hmeocn fJHomeoKfJCnK
9 4 cnconn JConnf:JontoKfJCnKKConn
10 9 3expb JConnf:JontoKfJCnKKConn
11 10 expcom f:JontoKfJCnKJConnKConn
12 7 8 11 syl2anc fJHomeoKJConnKConn
13 12 exlimiv ffJHomeoKJConnKConn
14 2 13 sylbi JHomeoKJConnKConn
15 1 14 sylbi JKJConnKConn