Metamath Proof Explorer


Theorem connsub

Description: Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009) (Proof shortened by Mario Carneiro, 10-Mar-2015)

Ref Expression
Assertion connsub JTopOnXSXJ𝑡SConnxJyJxSySxyXS¬Sxy

Proof

Step Hyp Ref Expression
1 connsuba JTopOnXSXJ𝑡SConnxJyJxSySxyS=xySS
2 inss1 xyx
3 toponss JTopOnXxJxX
4 3 ad2ant2r JTopOnXSXxJyJxX
5 2 4 sstrid JTopOnXSXxJyJxyX
6 reldisj xyXxyS=xyXS
7 5 6 syl JTopOnXSXxJyJxyS=xyXS
8 7 3anbi3d JTopOnXSXxJyJxSySxyS=xSySxyXS
9 sseqin2 SxyxyS=S
10 9 a1i JTopOnXSXxJyJSxyxyS=S
11 10 bicomd JTopOnXSXxJyJxyS=SSxy
12 11 necon3abid JTopOnXSXxJyJxySS¬Sxy
13 8 12 imbi12d JTopOnXSXxJyJxSySxyS=xySSxSySxyXS¬Sxy
14 13 2ralbidva JTopOnXSXxJyJxSySxyS=xySSxJyJxSySxyXS¬Sxy
15 1 14 bitrd JTopOnXSXJ𝑡SConnxJyJxSySxyXS¬Sxy