Metamath Proof Explorer


Theorem coprmdvds1

Description: If two positive integers are coprime, i.e. their greatest common divisor is 1, the only positive integer that divides both of them is 1. (Contributed by AV, 4-Aug-2021)

Ref Expression
Assertion coprmdvds1 FGFgcdG=1IIFIGI=1

Proof

Step Hyp Ref Expression
1 coprmgcdb FGiiFiGi=1FgcdG=1
2 breq1 i=IiFIF
3 breq1 i=IiGIG
4 2 3 anbi12d i=IiFiGIFIG
5 eqeq1 i=Ii=1I=1
6 4 5 imbi12d i=IiFiGi=1IFIGI=1
7 6 rspcv IiiFiGi=1IFIGI=1
8 7 com23 IIFIGiiFiGi=1I=1
9 8 3impib IIFIGiiFiGi=1I=1
10 9 com12 iiFiGi=1IIFIGI=1
11 1 10 syl6bir FGFgcdG=1IIFIGI=1
12 11 3impia FGFgcdG=1IIFIGI=1