Metamath Proof Explorer


Theorem copsex2g

Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995) Use a similar proof to copsex4g to reduce axiom usage. (Revised by SN, 1-Sep-2024)

Ref Expression
Hypothesis copsex2g.1 x=Ay=Bφψ
Assertion copsex2g AVBWxyAB=xyφψ

Proof

Step Hyp Ref Expression
1 copsex2g.1 x=Ay=Bφψ
2 eqcom AB=xyxy=AB
3 vex xV
4 vex yV
5 3 4 opth xy=ABx=Ay=B
6 2 5 bitri AB=xyx=Ay=B
7 6 anbi1i AB=xyφx=Ay=Bφ
8 7 2exbii xyAB=xyφxyx=Ay=Bφ
9 id x=Ay=Bx=Ay=B
10 9 1 cgsex2g AVBWxyx=Ay=Bφψ
11 8 10 bitrid AVBWxyAB=xyφψ