Metamath Proof Explorer


Theorem cosbnd

Description: The cosine of a real number lies between -1 and 1. Equation 18 of Gleason p. 311. (Contributed by NM, 16-Jan-2006)

Ref Expression
Assertion cosbnd A1cosAcosA1

Proof

Step Hyp Ref Expression
1 resincl AsinA
2 1 sqge0d A0sinA2
3 recoscl AcosA
4 3 resqcld AcosA2
5 1 resqcld AsinA2
6 4 5 addge02d A0sinA2cosA2sinA2+cosA2
7 2 6 mpbid AcosA2sinA2+cosA2
8 recn AA
9 sincossq AsinA2+cosA2=1
10 8 9 syl AsinA2+cosA2=1
11 sq1 12=1
12 10 11 eqtr4di AsinA2+cosA2=12
13 7 12 breqtrd AcosA212
14 1re 1
15 0le1 01
16 lenegsq cosA101cosA1cosA1cosA212
17 14 15 16 mp3an23 cosAcosA1cosA1cosA212
18 lenegcon1 cosA1cosA11cosA
19 14 18 mpan2 cosAcosA11cosA
20 19 anbi2d cosAcosA1cosA1cosA11cosA
21 17 20 bitr3d cosAcosA212cosA11cosA
22 3 21 syl AcosA212cosA11cosA
23 13 22 mpbid AcosA11cosA
24 23 ancomd A1cosAcosA1