Metamath Proof Explorer


Theorem coshval

Description: Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion coshval AcosiA=eA+eA2

Proof

Step Hyp Ref Expression
1 ax-icn i
2 mulcl iAiA
3 1 2 mpan AiA
4 cosval iAcosiA=eiiA+eiiA2
5 3 4 syl AcosiA=eiiA+eiiA2
6 negcl AA
7 efcl AeA
8 6 7 syl AeA
9 efcl AeA
10 ixi ii=1
11 10 oveq1i iiA=-1A
12 mulass iiAiiA=iiA
13 1 1 12 mp3an12 AiiA=iiA
14 mulm1 A-1A=A
15 11 13 14 3eqtr3a AiiA=A
16 15 fveq2d AeiiA=eA
17 1 1 mulneg1i ii=ii
18 10 negeqi ii=-1
19 negneg1e1 -1=1
20 17 18 19 3eqtri ii=1
21 20 oveq1i iiA=1A
22 negicn i
23 mulass iiAiiA=iiA
24 22 1 23 mp3an12 AiiA=iiA
25 mullid A1A=A
26 21 24 25 3eqtr3a AiiA=A
27 26 fveq2d AeiiA=eA
28 16 27 oveq12d AeiiA+eiiA=eA+eA
29 8 9 28 comraddd AeiiA+eiiA=eA+eA
30 29 oveq1d AeiiA+eiiA2=eA+eA2
31 5 30 eqtrd AcosiA=eA+eA2