Metamath Proof Explorer


Theorem cotval

Description: Value of the cotangent function. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion cotval A sin A 0 cot A = cos A sin A

Proof

Step Hyp Ref Expression
1 fveq2 y = A sin y = sin A
2 1 neeq1d y = A sin y 0 sin A 0
3 2 elrab A y | sin y 0 A sin A 0
4 fveq2 x = A cos x = cos A
5 fveq2 x = A sin x = sin A
6 4 5 oveq12d x = A cos x sin x = cos A sin A
7 df-cot cot = x y | sin y 0 cos x sin x
8 ovex cos A sin A V
9 6 7 8 fvmpt A y | sin y 0 cot A = cos A sin A
10 3 9 sylbir A sin A 0 cot A = cos A sin A