Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for David A. Wheeler
Reciprocal trigonometric functions (sec, csc, cot)
cotval
Next ⟩
seccl
Metamath Proof Explorer
Ascii
Unicode
Theorem
cotval
Description:
Value of the cotangent function.
(Contributed by
David A. Wheeler
, 14-Mar-2014)
Ref
Expression
Assertion
cotval
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
→
cot
⁡
A
=
cos
⁡
A
sin
⁡
A
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
y
=
A
→
sin
⁡
y
=
sin
⁡
A
2
1
neeq1d
⊢
y
=
A
→
sin
⁡
y
≠
0
↔
sin
⁡
A
≠
0
3
2
elrab
⊢
A
∈
y
∈
ℂ
|
sin
⁡
y
≠
0
↔
A
∈
ℂ
∧
sin
⁡
A
≠
0
4
fveq2
⊢
x
=
A
→
cos
⁡
x
=
cos
⁡
A
5
fveq2
⊢
x
=
A
→
sin
⁡
x
=
sin
⁡
A
6
4
5
oveq12d
⊢
x
=
A
→
cos
⁡
x
sin
⁡
x
=
cos
⁡
A
sin
⁡
A
7
df-cot
⊢
cot
=
x
∈
y
∈
ℂ
|
sin
⁡
y
≠
0
⟼
cos
⁡
x
sin
⁡
x
8
ovex
⊢
cos
⁡
A
sin
⁡
A
∈
V
9
6
7
8
fvmpt
⊢
A
∈
y
∈
ℂ
|
sin
⁡
y
≠
0
→
cot
⁡
A
=
cos
⁡
A
sin
⁡
A
10
3
9
sylbir
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
→
cot
⁡
A
=
cos
⁡
A
sin
⁡
A