Metamath Proof Explorer


Theorem cotval

Description: Value of the cotangent function. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion cotval AsinA0cotA=cosAsinA

Proof

Step Hyp Ref Expression
1 fveq2 y=Asiny=sinA
2 1 neeq1d y=Asiny0sinA0
3 2 elrab Ay|siny0AsinA0
4 fveq2 x=Acosx=cosA
5 fveq2 x=Asinx=sinA
6 4 5 oveq12d x=Acosxsinx=cosAsinA
7 df-cot cot=xy|siny0cosxsinx
8 ovex cosAsinAV
9 6 7 8 fvmpt Ay|siny0cotA=cosAsinA
10 3 9 sylbir AsinA0cotA=cosAsinA