Metamath Proof Explorer


Theorem cplem2

Description: Lemma for the Collection Principle cp . (Contributed by NM, 17-Oct-2003)

Ref Expression
Hypothesis cplem2.1 AV
Assertion cplem2 yxABBy

Proof

Step Hyp Ref Expression
1 cplem2.1 AV
2 scottex zB|wBrankzrankwV
3 1 2 iunex xAzB|wBrankzrankwV
4 nfiu1 _xxAzB|wBrankzrankw
5 4 nfeq2 xy=xAzB|wBrankzrankw
6 ineq2 y=xAzB|wBrankzrankwBy=BxAzB|wBrankzrankw
7 6 neeq1d y=xAzB|wBrankzrankwByBxAzB|wBrankzrankw
8 7 imbi2d y=xAzB|wBrankzrankwBByBBxAzB|wBrankzrankw
9 5 8 ralbid y=xAzB|wBrankzrankwxABByxABBxAzB|wBrankzrankw
10 eqid zB|wBrankzrankw=zB|wBrankzrankw
11 eqid xAzB|wBrankzrankw=xAzB|wBrankzrankw
12 10 11 cplem1 xABBxAzB|wBrankzrankw
13 3 9 12 ceqsexv2d yxABBy