Metamath Proof Explorer


Theorem cpm2mf

Description: The inverse matrix transformation is a function from the constant polynomial matrices to the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses cpm2mf.a A=NMatR
cpm2mf.k K=BaseA
cpm2mf.s S=NConstPolyMatR
cpm2mf.i I=NcPolyMatToMatR
Assertion cpm2mf NFinRRingI:SK

Proof

Step Hyp Ref Expression
1 cpm2mf.a A=NMatR
2 cpm2mf.k K=BaseA
3 cpm2mf.s S=NConstPolyMatR
4 cpm2mf.i I=NcPolyMatToMatR
5 4 3 cpm2mfval NFinRRingI=mSxN,yNcoe1xmy0
6 eqid BaseR=BaseR
7 simpll NFinRRingmSNFin
8 simplr NFinRRingmSRRing
9 eqid NMatPoly1R=NMatPoly1R
10 eqid BasePoly1R=BasePoly1R
11 eqid BaseNMatPoly1R=BaseNMatPoly1R
12 simp2 NFinRRingmSxNyNxN
13 simp3 NFinRRingmSxNyNyN
14 eqid Poly1R=Poly1R
15 3 14 9 11 cpmatpmat NFinRRingmSmBaseNMatPoly1R
16 15 3expa NFinRRingmSmBaseNMatPoly1R
17 16 3ad2ant1 NFinRRingmSxNyNmBaseNMatPoly1R
18 9 10 11 12 13 17 matecld NFinRRingmSxNyNxmyBasePoly1R
19 0nn0 00
20 eqid coe1xmy=coe1xmy
21 20 10 14 6 coe1fvalcl xmyBasePoly1R00coe1xmy0BaseR
22 18 19 21 sylancl NFinRRingmSxNyNcoe1xmy0BaseR
23 1 6 2 7 8 22 matbas2d NFinRRingmSxN,yNcoe1xmy0K
24 5 23 fmpt3d NFinRRingI:SK