Metamath Proof Explorer


Theorem cpm2mval

Description: The result of an inverse matrix transformation. (Contributed by AV, 12-Nov-2019) (Revised by AV, 14-Dec-2019)

Ref Expression
Hypotheses cpm2mfval.i I = N cPolyMatToMat R
cpm2mfval.s S = N ConstPolyMat R
Assertion cpm2mval N Fin R V M S I M = x N , y N coe 1 x M y 0

Proof

Step Hyp Ref Expression
1 cpm2mfval.i I = N cPolyMatToMat R
2 cpm2mfval.s S = N ConstPolyMat R
3 1 2 cpm2mfval N Fin R V I = m S x N , y N coe 1 x m y 0
4 3 3adant3 N Fin R V M S I = m S x N , y N coe 1 x m y 0
5 oveq m = M x m y = x M y
6 5 fveq2d m = M coe 1 x m y = coe 1 x M y
7 6 fveq1d m = M coe 1 x m y 0 = coe 1 x M y 0
8 7 mpoeq3dv m = M x N , y N coe 1 x m y 0 = x N , y N coe 1 x M y 0
9 8 adantl N Fin R V M S m = M x N , y N coe 1 x m y 0 = x N , y N coe 1 x M y 0
10 simp3 N Fin R V M S M S
11 simp1 N Fin R V M S N Fin
12 mpoexga N Fin N Fin x N , y N coe 1 x M y 0 V
13 11 11 12 syl2anc N Fin R V M S x N , y N coe 1 x M y 0 V
14 4 9 10 13 fvmptd N Fin R V M S I M = x N , y N coe 1 x M y 0