Metamath Proof Explorer


Theorem cpmat

Description: Value of the constructor of the set of all constant polynomial matrices, i.e. the set of all N x N matrices of polynomials over a ring R . (Contributed by AV, 15-Nov-2019)

Ref Expression
Hypotheses cpmat.s S = N ConstPolyMat R
cpmat.p P = Poly 1 R
cpmat.c C = N Mat P
cpmat.b B = Base C
Assertion cpmat N Fin R V S = m B | i N j N k coe 1 i m j k = 0 R

Proof

Step Hyp Ref Expression
1 cpmat.s S = N ConstPolyMat R
2 cpmat.p P = Poly 1 R
3 cpmat.c C = N Mat P
4 cpmat.b B = Base C
5 df-cpmat ConstPolyMat = n Fin , r V m Base n Mat Poly 1 r | i n j n k coe 1 i m j k = 0 r
6 5 a1i N Fin R V ConstPolyMat = n Fin , r V m Base n Mat Poly 1 r | i n j n k coe 1 i m j k = 0 r
7 simpl n = N r = R n = N
8 fveq2 r = R Poly 1 r = Poly 1 R
9 8 adantl n = N r = R Poly 1 r = Poly 1 R
10 7 9 oveq12d n = N r = R n Mat Poly 1 r = N Mat Poly 1 R
11 10 fveq2d n = N r = R Base n Mat Poly 1 r = Base N Mat Poly 1 R
12 2 oveq2i N Mat P = N Mat Poly 1 R
13 3 12 eqtri C = N Mat Poly 1 R
14 13 fveq2i Base C = Base N Mat Poly 1 R
15 4 14 eqtri B = Base N Mat Poly 1 R
16 11 15 eqtr4di n = N r = R Base n Mat Poly 1 r = B
17 fveq2 r = R 0 r = 0 R
18 17 adantl n = N r = R 0 r = 0 R
19 18 eqeq2d n = N r = R coe 1 i m j k = 0 r coe 1 i m j k = 0 R
20 19 ralbidv n = N r = R k coe 1 i m j k = 0 r k coe 1 i m j k = 0 R
21 7 20 raleqbidv n = N r = R j n k coe 1 i m j k = 0 r j N k coe 1 i m j k = 0 R
22 7 21 raleqbidv n = N r = R i n j n k coe 1 i m j k = 0 r i N j N k coe 1 i m j k = 0 R
23 16 22 rabeqbidv n = N r = R m Base n Mat Poly 1 r | i n j n k coe 1 i m j k = 0 r = m B | i N j N k coe 1 i m j k = 0 R
24 23 adantl N Fin R V n = N r = R m Base n Mat Poly 1 r | i n j n k coe 1 i m j k = 0 r = m B | i N j N k coe 1 i m j k = 0 R
25 simpl N Fin R V N Fin
26 elex R V R V
27 26 adantl N Fin R V R V
28 4 fvexi B V
29 rabexg B V m B | i N j N k coe 1 i m j k = 0 R V
30 28 29 mp1i N Fin R V m B | i N j N k coe 1 i m j k = 0 R V
31 6 24 25 27 30 ovmpod N Fin R V N ConstPolyMat R = m B | i N j N k coe 1 i m j k = 0 R
32 1 31 eqtrid N Fin R V S = m B | i N j N k coe 1 i m j k = 0 R