Metamath Proof Explorer


Theorem crng12d

Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses crng12d.b B=BaseR
crng12d.t ·˙=R
crng12d.r φRCRing
crng12d.1 φXB
crng12d.2 φYB
crng12d.3 φZB
Assertion crng12d φX·˙Y·˙Z=Y·˙X·˙Z

Proof

Step Hyp Ref Expression
1 crng12d.b B=BaseR
2 crng12d.t ·˙=R
3 crng12d.r φRCRing
4 crng12d.1 φXB
5 crng12d.2 φYB
6 crng12d.3 φZB
7 1 2 3 4 5 crngcomd φX·˙Y=Y·˙X
8 7 oveq1d φX·˙Y·˙Z=Y·˙X·˙Z
9 3 crngringd φRRing
10 1 2 9 4 5 6 ringassd φX·˙Y·˙Z=X·˙Y·˙Z
11 1 2 9 5 4 6 ringassd φY·˙X·˙Z=Y·˙X·˙Z
12 8 10 11 3eqtr3d φX·˙Y·˙Z=Y·˙X·˙Z