Metamath Proof Explorer


Theorem csbcog

Description: Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020)

Ref Expression
Assertion csbcog AVA/xBC=A/xBA/xC

Proof

Step Hyp Ref Expression
1 csbeq1 y=Ay/xBC=A/xBC
2 csbeq1 y=Ay/xB=A/xB
3 csbeq1 y=Ay/xC=A/xC
4 2 3 coeq12d y=Ay/xBy/xC=A/xBA/xC
5 1 4 eqeq12d y=Ay/xBC=y/xBy/xCA/xBC=A/xBA/xC
6 vex yV
7 nfcsb1v _xy/xB
8 nfcsb1v _xy/xC
9 7 8 nfco _xy/xBy/xC
10 csbeq1a x=yB=y/xB
11 csbeq1a x=yC=y/xC
12 10 11 coeq12d x=yBC=y/xBy/xC
13 6 9 12 csbief y/xBC=y/xBy/xC
14 5 13 vtoclg AVA/xBC=A/xBA/xC