Metamath Proof Explorer


Theorem csbdif

Description: Distribution of class substitution over difference of two classes. (Contributed by ML, 14-Jul-2020)

Ref Expression
Assertion csbdif A/xBC=A/xBA/xC

Proof

Step Hyp Ref Expression
1 csbeq1 y=Ay/xBC=A/xBC
2 csbeq1 y=Ay/xB=A/xB
3 csbeq1 y=Ay/xC=A/xC
4 2 3 difeq12d y=Ay/xBy/xC=A/xBA/xC
5 1 4 eqeq12d y=Ay/xBC=y/xBy/xCA/xBC=A/xBA/xC
6 vex yV
7 nfcsb1v _xy/xB
8 nfcsb1v _xy/xC
9 7 8 nfdif _xy/xBy/xC
10 csbeq1a x=yB=y/xB
11 csbeq1a x=yC=y/xC
12 10 11 difeq12d x=yBC=y/xBy/xC
13 6 9 12 csbief y/xBC=y/xBy/xC
14 5 13 vtoclg AVA/xBC=A/xBA/xC
15 dif0 =
16 15 a1i ¬AV=
17 csbprc ¬AVA/xB=
18 csbprc ¬AVA/xC=
19 17 18 difeq12d ¬AVA/xBA/xC=
20 csbprc ¬AVA/xBC=
21 16 19 20 3eqtr4rd ¬AVA/xBC=A/xBA/xC
22 14 21 pm2.61i A/xBC=A/xBA/xC