Metamath Proof Explorer


Theorem csbhypf

Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf for class substitution version. (Contributed by NM, 19-Dec-2008)

Ref Expression
Hypotheses csbhypf.1 _xA
csbhypf.2 _xC
csbhypf.3 x=AB=C
Assertion csbhypf y=Ay/xB=C

Proof

Step Hyp Ref Expression
1 csbhypf.1 _xA
2 csbhypf.2 _xC
3 csbhypf.3 x=AB=C
4 1 nfeq2 xy=A
5 nfcsb1v _xy/xB
6 5 2 nfeq xy/xB=C
7 4 6 nfim xy=Ay/xB=C
8 eqeq1 x=yx=Ay=A
9 csbeq1a x=yB=y/xB
10 9 eqeq1d x=yB=Cy/xB=C
11 8 10 imbi12d x=yx=AB=Cy=Ay/xB=C
12 7 11 3 chvarfv y=Ay/xB=C