Metamath Proof Explorer


Theorem csbxp

Description: Distribute proper substitution through the Cartesian product of two classes. (Contributed by Alan Sare, 10-Nov-2012) (Revised by NM, 23-Aug-2018)

Ref Expression
Assertion csbxp A/xB×C=A/xB×A/xC

Proof

Step Hyp Ref Expression
1 csbab A/xz|wyz=wywByC=z|[˙A/x]˙wyz=wywByC
2 sbcex2 [˙A/x]˙wyz=wywByCw[˙A/x]˙yz=wywByC
3 sbcex2 [˙A/x]˙yz=wywByCy[˙A/x]˙z=wywByC
4 sbcan [˙A/x]˙z=wywByC[˙A/x]˙z=wy[˙A/x]˙wByC
5 sbcg AV[˙A/x]˙z=wyz=wy
6 sbcan [˙A/x]˙wByC[˙A/x]˙wB[˙A/x]˙yC
7 sbcel2 [˙A/x]˙wBwA/xB
8 sbcel2 [˙A/x]˙yCyA/xC
9 7 8 anbi12i [˙A/x]˙wB[˙A/x]˙yCwA/xByA/xC
10 6 9 bitri [˙A/x]˙wByCwA/xByA/xC
11 10 a1i AV[˙A/x]˙wByCwA/xByA/xC
12 5 11 anbi12d AV[˙A/x]˙z=wy[˙A/x]˙wByCz=wywA/xByA/xC
13 sbcex [˙A/x]˙wByCAV
14 13 con3i ¬AV¬[˙A/x]˙wByC
15 14 intnand ¬AV¬[˙A/x]˙z=wy[˙A/x]˙wByC
16 noel ¬y
17 16 a1i ¬AV¬y
18 csbprc ¬AVA/xC=
19 17 18 neleqtrrd ¬AV¬yA/xC
20 19 intnand ¬AV¬wA/xByA/xC
21 20 intnand ¬AV¬z=wywA/xByA/xC
22 15 21 2falsed ¬AV[˙A/x]˙z=wy[˙A/x]˙wByCz=wywA/xByA/xC
23 12 22 pm2.61i [˙A/x]˙z=wy[˙A/x]˙wByCz=wywA/xByA/xC
24 4 23 bitri [˙A/x]˙z=wywByCz=wywA/xByA/xC
25 24 exbii y[˙A/x]˙z=wywByCyz=wywA/xByA/xC
26 3 25 bitri [˙A/x]˙yz=wywByCyz=wywA/xByA/xC
27 26 exbii w[˙A/x]˙yz=wywByCwyz=wywA/xByA/xC
28 2 27 bitri [˙A/x]˙wyz=wywByCwyz=wywA/xByA/xC
29 28 abbii z|[˙A/x]˙wyz=wywByC=z|wyz=wywA/xByA/xC
30 1 29 eqtri A/xz|wyz=wywByC=z|wyz=wywA/xByA/xC
31 df-xp B×C=wy|wByC
32 df-opab wy|wByC=z|wyz=wywByC
33 31 32 eqtri B×C=z|wyz=wywByC
34 33 csbeq2i A/xB×C=A/xz|wyz=wywByC
35 df-xp A/xB×A/xC=wy|wA/xByA/xC
36 df-opab wy|wA/xByA/xC=z|wyz=wywA/xByA/xC
37 35 36 eqtri A/xB×A/xC=z|wyz=wywA/xByA/xC
38 30 34 37 3eqtr4i A/xB×C=A/xB×A/xC