| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbab |  | 
						
							| 2 |  | sbcex2 |  | 
						
							| 3 |  | sbcex2 |  | 
						
							| 4 |  | sbcan |  | 
						
							| 5 |  | sbcg |  | 
						
							| 6 |  | sbcan |  | 
						
							| 7 |  | sbcel2 |  | 
						
							| 8 |  | sbcel2 |  | 
						
							| 9 | 7 8 | anbi12i |  | 
						
							| 10 | 6 9 | bitri |  | 
						
							| 11 | 10 | a1i |  | 
						
							| 12 | 5 11 | anbi12d |  | 
						
							| 13 |  | sbcex |  | 
						
							| 14 | 13 | con3i |  | 
						
							| 15 | 14 | intnand |  | 
						
							| 16 |  | noel |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 |  | csbprc |  | 
						
							| 19 | 17 18 | neleqtrrd |  | 
						
							| 20 | 19 | intnand |  | 
						
							| 21 | 20 | intnand |  | 
						
							| 22 | 15 21 | 2falsed |  | 
						
							| 23 | 12 22 | pm2.61i |  | 
						
							| 24 | 4 23 | bitri |  | 
						
							| 25 | 24 | exbii |  | 
						
							| 26 | 3 25 | bitri |  | 
						
							| 27 | 26 | exbii |  | 
						
							| 28 | 2 27 | bitri |  | 
						
							| 29 | 28 | abbii |  | 
						
							| 30 | 1 29 | eqtri |  | 
						
							| 31 |  | df-xp |  | 
						
							| 32 |  | df-opab |  | 
						
							| 33 | 31 32 | eqtri |  | 
						
							| 34 | 33 | csbeq2i |  | 
						
							| 35 |  | df-xp |  | 
						
							| 36 |  | df-opab |  | 
						
							| 37 | 35 36 | eqtri |  | 
						
							| 38 | 30 34 37 | 3eqtr4i |  |