Metamath Proof Explorer


Theorem csbxpgVD

Description: Virtual deduction proof of csbxp . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbxp is csbxpgVD without virtual deductions and was automatically derived from csbxpgVD .

1:: |- (. A e. V ->. A e. V ).
2:1: |- (. A e. V ->. ( [. A / x ]. w e. B <-> [_ A / x ]_ w e. [_ A / x ]_ B ) ).
3:1: |- (. A e. V ->. [_ A / x ]_ w = w ).
4:3: |- (. A e. V ->. ( [_ A / x ]_ w e. [_ A / x ]_ B <-> w e. [_ A / x ]_ B ) ).
5:2,4: |- (. A e. V ->. ( [. A / x ]. w e. B <-> w e. [_ A / x ]_ B ) ).
6:1: |- (. A e. V ->. ( [. A / x ]. y e. C <-> [_ A / x ]_ y e. [_ A / x ]_ C ) ).
7:1: |- (. A e. V ->. [_ A / x ]_ y = y ).
8:7: |- (. A e. V ->. ( [_ A / x ]_ y e. [_ A / x ]_ C <-> y e. [_ A / x ]_ C ) ).
9:6,8: |- (. A e. V ->. ( [. A / x ]. y e. C <-> y e. [_ A / x ]_ C ) ).
10:5,9: |- (. A e. V ->. ( ( [. A / x ]. w e. B /\ [. A / x ]. y e. C ) <-> ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ).
11:1: |- (. A e. V ->. ( [. A / x ]. ( w e. B /\ y e. C ) <-> ( [. A / x ]. w e. B /\ [. A / x ]. y e. C ) ) ).
12:10,11: |- (. A e. V ->. ( [. A / x ]. ( w e. B /\ y e. C ) <-> ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ).
13:1: |- (. A e. V ->. ( [. A / x ]. z = <. w ,. y >. <-> z = <. w , y >. ) ).
14:12,13: |- (. A e. V ->. ( ( [. A / x ]. z = <. w ,. y >. /\ [. A / x ]. ( w e. B /\ y e. C ) ) <-> ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
15:1: |- (. A e. V ->. ( [. A / x ]. ( z = <. w ,. y >. /\ ( w e. B /\ y e. C ) ) <-> ( [. A / x ]. z = <. w , y >. /\ [. A / x ]. ( w e. B /\ y e. C ) ) ) ).
16:14,15: |- (. A e. V ->. ( [. A / x ]. ( z = <. w ,. y >. /\ ( w e. B /\ y e. C ) ) <-> ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
17:16: |- (. A e. V ->. A. y ( [. A / x ]. ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
18:17: |- (. A e. V ->. ( E. y [. A / x ]. ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
19:1: |- (. A e. V ->. ( [. A / x ]. E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. y [. A / x ]. ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) ) ).
20:18,19: |- (. A e. V ->. ( [. A / x ]. E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
21:20: |- (. A e. V ->. A. w ( [. A / x ]. E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
22:21: |- (. A e. V ->. ( E. w [. A / x ]. E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
23:1: |- (. A e. V ->. ( [. A / x ]. E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. w [. A / x ]. E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) ) ).
24:22,23: |- (. A e. V ->. ( [. A / x ]. E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
25:24: |- (. A e. V ->. A. z ( [. A / x ]. E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
26:25: |- (. A e. V ->. { z | [. A / x ]. E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) } = { z | E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) } ).
27:1: |- (. A e. V ->. [_ A / x ]_ { z | E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) } = { z | [. A / x ]. E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) } ).
28:26,27: |- (. A e. V ->. [_ A / x ]_ { z | E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) } = { z | E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) } ).
29:: |- { <. w ,. y >. | ( w e. B /\ y e. C ) } = { z | E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) }
30:: |- ( B X. C ) = { <. w ,. y >. | ( w e. B /\ y e. C ) }
31:29,30: |- ( B X. C ) = { z | E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) }
32:31: |- A. x ( B X. C ) = { z | E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) }
33:1,32: |- (. A e. V ->. [_ A / x ]_ ( B X. C ) = [_ A / x ]_ { z | E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) } ).
34:28,33: |- (. A e. V ->. [_ A / x ]_ ( B X. C ) = { z | E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) } ).
35:: |- { <. w ,. y >. | ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) } = { z | E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) }
36:: |- ( [_ A / x ]_ B X. [_ A / x ]_ C ) = { <. w , y >. | ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) }
37:35,36: |- ( [_ A / x ]_ B X. [_ A / x ]_ C ) = { z | E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) }
38:34,37: |- (. A e. V ->. [_ A / x ]_ ( B X. C ) = ( [_ A / x ]_ B X. [_ A / x ]_ C ) ).
qed:38: |- ( A e. V -> [_ A / x ]_ ( B X. C ) = ( [_ A / x ]_ B X. [_ A / x ]_ C ) )
(Contributed by Alan Sare, 10-Nov-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion csbxpgVD AVA/xB×C=A/xB×A/xC

Proof

Step Hyp Ref Expression
1 idn1 AVAV
2 sbcel12 [˙A/x]˙wBA/xwA/xB
3 2 a1i AV[˙A/x]˙wBA/xwA/xB
4 1 3 e1a AV[˙A/x]˙wBA/xwA/xB
5 csbconstg AVA/xw=w
6 1 5 e1a AVA/xw=w
7 eleq1 A/xw=wA/xwA/xBwA/xB
8 6 7 e1a AVA/xwA/xBwA/xB
9 bibi1 [˙A/x]˙wBA/xwA/xB[˙A/x]˙wBwA/xBA/xwA/xBwA/xB
10 9 biimprd [˙A/x]˙wBA/xwA/xBA/xwA/xBwA/xB[˙A/x]˙wBwA/xB
11 4 8 10 e11 AV[˙A/x]˙wBwA/xB
12 sbcel12 [˙A/x]˙yCA/xyA/xC
13 12 a1i AV[˙A/x]˙yCA/xyA/xC
14 1 13 e1a AV[˙A/x]˙yCA/xyA/xC
15 csbconstg AVA/xy=y
16 1 15 e1a AVA/xy=y
17 eleq1 A/xy=yA/xyA/xCyA/xC
18 16 17 e1a AVA/xyA/xCyA/xC
19 bibi1 [˙A/x]˙yCA/xyA/xC[˙A/x]˙yCyA/xCA/xyA/xCyA/xC
20 19 biimprd [˙A/x]˙yCA/xyA/xCA/xyA/xCyA/xC[˙A/x]˙yCyA/xC
21 14 18 20 e11 AV[˙A/x]˙yCyA/xC
22 pm4.38 [˙A/x]˙wBwA/xB[˙A/x]˙yCyA/xC[˙A/x]˙wB[˙A/x]˙yCwA/xByA/xC
23 22 ex [˙A/x]˙wBwA/xB[˙A/x]˙yCyA/xC[˙A/x]˙wB[˙A/x]˙yCwA/xByA/xC
24 11 21 23 e11 AV[˙A/x]˙wB[˙A/x]˙yCwA/xByA/xC
25 sbcan [˙A/x]˙wByC[˙A/x]˙wB[˙A/x]˙yC
26 25 a1i AV[˙A/x]˙wByC[˙A/x]˙wB[˙A/x]˙yC
27 1 26 e1a AV[˙A/x]˙wByC[˙A/x]˙wB[˙A/x]˙yC
28 bibi1 [˙A/x]˙wByC[˙A/x]˙wB[˙A/x]˙yC[˙A/x]˙wByCwA/xByA/xC[˙A/x]˙wB[˙A/x]˙yCwA/xByA/xC
29 28 biimprcd [˙A/x]˙wB[˙A/x]˙yCwA/xByA/xC[˙A/x]˙wByC[˙A/x]˙wB[˙A/x]˙yC[˙A/x]˙wByCwA/xByA/xC
30 24 27 29 e11 AV[˙A/x]˙wByCwA/xByA/xC
31 sbcg AV[˙A/x]˙z=wyz=wy
32 1 31 e1a AV[˙A/x]˙z=wyz=wy
33 pm4.38 [˙A/x]˙z=wyz=wy[˙A/x]˙wByCwA/xByA/xC[˙A/x]˙z=wy[˙A/x]˙wByCz=wywA/xByA/xC
34 33 expcom [˙A/x]˙wByCwA/xByA/xC[˙A/x]˙z=wyz=wy[˙A/x]˙z=wy[˙A/x]˙wByCz=wywA/xByA/xC
35 30 32 34 e11 AV[˙A/x]˙z=wy[˙A/x]˙wByCz=wywA/xByA/xC
36 sbcan [˙A/x]˙z=wywByC[˙A/x]˙z=wy[˙A/x]˙wByC
37 36 a1i AV[˙A/x]˙z=wywByC[˙A/x]˙z=wy[˙A/x]˙wByC
38 1 37 e1a AV[˙A/x]˙z=wywByC[˙A/x]˙z=wy[˙A/x]˙wByC
39 bibi1 [˙A/x]˙z=wywByC[˙A/x]˙z=wy[˙A/x]˙wByC[˙A/x]˙z=wywByCz=wywA/xByA/xC[˙A/x]˙z=wy[˙A/x]˙wByCz=wywA/xByA/xC
40 39 biimprcd [˙A/x]˙z=wy[˙A/x]˙wByCz=wywA/xByA/xC[˙A/x]˙z=wywByC[˙A/x]˙z=wy[˙A/x]˙wByC[˙A/x]˙z=wywByCz=wywA/xByA/xC
41 35 38 40 e11 AV[˙A/x]˙z=wywByCz=wywA/xByA/xC
42 41 gen11 AVy[˙A/x]˙z=wywByCz=wywA/xByA/xC
43 exbi y[˙A/x]˙z=wywByCz=wywA/xByA/xCy[˙A/x]˙z=wywByCyz=wywA/xByA/xC
44 42 43 e1a AVy[˙A/x]˙z=wywByCyz=wywA/xByA/xC
45 sbcex2 [˙A/x]˙yz=wywByCy[˙A/x]˙z=wywByC
46 45 a1i AV[˙A/x]˙yz=wywByCy[˙A/x]˙z=wywByC
47 1 46 e1a AV[˙A/x]˙yz=wywByCy[˙A/x]˙z=wywByC
48 bibi1 [˙A/x]˙yz=wywByCy[˙A/x]˙z=wywByC[˙A/x]˙yz=wywByCyz=wywA/xByA/xCy[˙A/x]˙z=wywByCyz=wywA/xByA/xC
49 48 biimprcd y[˙A/x]˙z=wywByCyz=wywA/xByA/xC[˙A/x]˙yz=wywByCy[˙A/x]˙z=wywByC[˙A/x]˙yz=wywByCyz=wywA/xByA/xC
50 44 47 49 e11 AV[˙A/x]˙yz=wywByCyz=wywA/xByA/xC
51 50 gen11 AVw[˙A/x]˙yz=wywByCyz=wywA/xByA/xC
52 exbi w[˙A/x]˙yz=wywByCyz=wywA/xByA/xCw[˙A/x]˙yz=wywByCwyz=wywA/xByA/xC
53 51 52 e1a AVw[˙A/x]˙yz=wywByCwyz=wywA/xByA/xC
54 sbcex2 [˙A/x]˙wyz=wywByCw[˙A/x]˙yz=wywByC
55 54 a1i AV[˙A/x]˙wyz=wywByCw[˙A/x]˙yz=wywByC
56 1 55 e1a AV[˙A/x]˙wyz=wywByCw[˙A/x]˙yz=wywByC
57 bibi1 [˙A/x]˙wyz=wywByCw[˙A/x]˙yz=wywByC[˙A/x]˙wyz=wywByCwyz=wywA/xByA/xCw[˙A/x]˙yz=wywByCwyz=wywA/xByA/xC
58 57 biimprcd w[˙A/x]˙yz=wywByCwyz=wywA/xByA/xC[˙A/x]˙wyz=wywByCw[˙A/x]˙yz=wywByC[˙A/x]˙wyz=wywByCwyz=wywA/xByA/xC
59 53 56 58 e11 AV[˙A/x]˙wyz=wywByCwyz=wywA/xByA/xC
60 59 gen11 AVz[˙A/x]˙wyz=wywByCwyz=wywA/xByA/xC
61 abbib z|[˙A/x]˙wyz=wywByC=z|wyz=wywA/xByA/xCz[˙A/x]˙wyz=wywByCwyz=wywA/xByA/xC
62 61 biimpri z[˙A/x]˙wyz=wywByCwyz=wywA/xByA/xCz|[˙A/x]˙wyz=wywByC=z|wyz=wywA/xByA/xC
63 60 62 e1a AVz|[˙A/x]˙wyz=wywByC=z|wyz=wywA/xByA/xC
64 csbab A/xz|wyz=wywByC=z|[˙A/x]˙wyz=wywByC
65 64 a1i AVA/xz|wyz=wywByC=z|[˙A/x]˙wyz=wywByC
66 1 65 e1a AVA/xz|wyz=wywByC=z|[˙A/x]˙wyz=wywByC
67 eqeq2 z|[˙A/x]˙wyz=wywByC=z|wyz=wywA/xByA/xCA/xz|wyz=wywByC=z|[˙A/x]˙wyz=wywByCA/xz|wyz=wywByC=z|wyz=wywA/xByA/xC
68 67 biimpd z|[˙A/x]˙wyz=wywByC=z|wyz=wywA/xByA/xCA/xz|wyz=wywByC=z|[˙A/x]˙wyz=wywByCA/xz|wyz=wywByC=z|wyz=wywA/xByA/xC
69 63 66 68 e11 AVA/xz|wyz=wywByC=z|wyz=wywA/xByA/xC
70 df-xp B×C=wy|wByC
71 df-opab wy|wByC=z|wyz=wywByC
72 70 71 eqtri B×C=z|wyz=wywByC
73 72 ax-gen xB×C=z|wyz=wywByC
74 csbeq2 xB×C=z|wyz=wywByCA/xB×C=A/xz|wyz=wywByC
75 74 a1i AVxB×C=z|wyz=wywByCA/xB×C=A/xz|wyz=wywByC
76 1 73 75 e10 AVA/xB×C=A/xz|wyz=wywByC
77 eqeq2 A/xz|wyz=wywByC=z|wyz=wywA/xByA/xCA/xB×C=A/xz|wyz=wywByCA/xB×C=z|wyz=wywA/xByA/xC
78 77 biimpd A/xz|wyz=wywByC=z|wyz=wywA/xByA/xCA/xB×C=A/xz|wyz=wywByCA/xB×C=z|wyz=wywA/xByA/xC
79 69 76 78 e11 AVA/xB×C=z|wyz=wywA/xByA/xC
80 df-xp A/xB×A/xC=wy|wA/xByA/xC
81 df-opab wy|wA/xByA/xC=z|wyz=wywA/xByA/xC
82 80 81 eqtri A/xB×A/xC=z|wyz=wywA/xByA/xC
83 eqeq2 A/xB×A/xC=z|wyz=wywA/xByA/xCA/xB×C=A/xB×A/xCA/xB×C=z|wyz=wywA/xByA/xC
84 83 biimprcd A/xB×C=z|wyz=wywA/xByA/xCA/xB×A/xC=z|wyz=wywA/xByA/xCA/xB×C=A/xB×A/xC
85 79 82 84 e10 AVA/xB×C=A/xB×A/xC
86 85 in1 AVA/xB×C=A/xB×A/xC