Metamath Proof Explorer


Theorem cshw1repsw

Description: If cyclically shifting a word by 1 position results in the word itself, the word is a "repeated symbol word". Remark: also "valid" for an empty word! (Contributed by AV, 8-Nov-2018) (Proof shortened by AV, 10-Nov-2018)

Ref Expression
Assertion cshw1repsw WWordVWcyclShift1=WW=W0repeatSW

Proof

Step Hyp Ref Expression
1 cshw1 WWordVWcyclShift1=Wi0..^WWi=W0
2 repswsymballbi WWordVW=W0repeatSWi0..^WWi=W0
3 2 bicomd WWordVi0..^WWi=W0W=W0repeatSW
4 3 adantr WWordVWcyclShift1=Wi0..^WWi=W0W=W0repeatSW
5 1 4 mpbid WWordVWcyclShift1=WW=W0repeatSW