Metamath Proof Explorer


Theorem cshwleneq

Description: If the results of cyclically shifting two words are equal, the length of the two words was equal. (Contributed by AV, 21-Apr-2018) (Revised by AV, 5-Jun-2018) (Revised by AV, 1-Nov-2018)

Ref Expression
Assertion cshwleneq WWordVUWordVNMWcyclShiftN=UcyclShiftMW=U

Proof

Step Hyp Ref Expression
1 cshwlen WWordVNWcyclShiftN=W
2 1 ad2ant2r WWordVUWordVNMWcyclShiftN=W
3 2 eqcomd WWordVUWordVNMW=WcyclShiftN
4 3 3adant3 WWordVUWordVNMWcyclShiftN=UcyclShiftMW=WcyclShiftN
5 fveq2 WcyclShiftN=UcyclShiftMWcyclShiftN=UcyclShiftM
6 5 3ad2ant3 WWordVUWordVNMWcyclShiftN=UcyclShiftMWcyclShiftN=UcyclShiftM
7 cshwlen UWordVMUcyclShiftM=U
8 7 ad2ant2l WWordVUWordVNMUcyclShiftM=U
9 8 3adant3 WWordVUWordVNMWcyclShiftN=UcyclShiftMUcyclShiftM=U
10 4 6 9 3eqtrd WWordVUWordVNMWcyclShiftN=UcyclShiftMW=U