Metamath Proof Explorer


Theorem css0

Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses css0.c C=ClSubSpW
css0.z 0˙=0W
Assertion css0 WPreHil0˙C

Proof

Step Hyp Ref Expression
1 css0.c C=ClSubSpW
2 css0.z 0˙=0W
3 eqid BaseW=BaseW
4 eqid ocvW=ocvW
5 3 4 2 ocv1 WPreHilocvWBaseW=0˙
6 ssid BaseWBaseW
7 3 1 4 ocvcss WPreHilBaseWBaseWocvWBaseWC
8 6 7 mpan2 WPreHilocvWBaseWC
9 5 8 eqeltrrd WPreHil0˙C