Metamath Proof Explorer


Theorem curf11

Description: Value of the double evaluated curry functor. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses curfval.g G=CDcurryFF
curfval.a A=BaseC
curfval.c φCCat
curfval.d φDCat
curfval.f φFC×cDFuncE
curfval.b B=BaseD
curf1.x φXA
curf1.k K=1stGX
curf11.y φYB
Assertion curf11 φ1stKY=X1stFY

Proof

Step Hyp Ref Expression
1 curfval.g G=CDcurryFF
2 curfval.a A=BaseC
3 curfval.c φCCat
4 curfval.d φDCat
5 curfval.f φFC×cDFuncE
6 curfval.b B=BaseD
7 curf1.x φXA
8 curf1.k K=1stGX
9 curf11.y φYB
10 eqid HomD=HomD
11 eqid IdC=IdC
12 1 2 3 4 5 6 7 8 10 11 curf1 φK=yBX1stFyyB,zBgyHomDzIdCXXy2ndFXzg
13 6 fvexi BV
14 13 mptex yBX1stFyV
15 13 13 mpoex yB,zBgyHomDzIdCXXy2ndFXzgV
16 14 15 op1std K=yBX1stFyyB,zBgyHomDzIdCXXy2ndFXzg1stK=yBX1stFy
17 12 16 syl φ1stK=yBX1stFy
18 simpr φy=Yy=Y
19 18 oveq2d φy=YX1stFy=X1stFY
20 ovexd φX1stFYV
21 17 19 9 20 fvmptd φ1stKY=X1stFY