Metamath Proof Explorer


Theorem curf1fval

Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses curfval.g G=CDcurryFF
curfval.a A=BaseC
curfval.c φCCat
curfval.d φDCat
curfval.f φFC×cDFuncE
curfval.b B=BaseD
curfval.j J=HomD
curfval.1 1˙=IdC
Assertion curf1fval φ1stG=xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzg

Proof

Step Hyp Ref Expression
1 curfval.g G=CDcurryFF
2 curfval.a A=BaseC
3 curfval.c φCCat
4 curfval.d φDCat
5 curfval.f φFC×cDFuncE
6 curfval.b B=BaseD
7 curfval.j J=HomD
8 curfval.1 1˙=IdC
9 eqid HomC=HomC
10 eqid IdD=IdD
11 1 2 3 4 5 6 7 8 9 10 curfval φG=xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzgxA,yAgxHomCyzBgxz2ndFyzIdDz
12 2 fvexi AV
13 12 mptex xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzgV
14 12 12 mpoex xA,yAgxHomCyzBgxz2ndFyzIdDzV
15 13 14 op1std G=xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzgxA,yAgxHomCyzBgxz2ndFyzIdDz1stG=xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzg
16 11 15 syl φ1stG=xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzg