Metamath Proof Explorer


Theorem cusgrexilem2

Description: Lemma 2 for cusgrexi . (Contributed by AV, 12-Jan-2018) (Revised by AV, 10-Nov-2021)

Ref Expression
Hypothesis usgrexi.p P=x𝒫V|x=2
Assertion cusgrexilem2 VWvVnVveranIPvne

Proof

Step Hyp Ref Expression
1 usgrexi.p P=x𝒫V|x=2
2 simpr VWvVvV
3 eldifi nVvnV
4 prelpwi vVnVvn𝒫V
5 2 3 4 syl2an VWvVnVvvn𝒫V
6 eldifsni nVvnv
7 6 necomd nVvvn
8 7 adantl VWvVnVvvn
9 hashprg vVnVvnvn=2
10 2 3 9 syl2an VWvVnVvvnvn=2
11 8 10 mpbid VWvVnVvvn=2
12 fveqeq2 x=vnx=2vn=2
13 rnresi ranIP=P
14 13 1 eqtri ranIP=x𝒫V|x=2
15 12 14 elrab2 vnranIPvn𝒫Vvn=2
16 5 11 15 sylanbrc VWvVnVvvnranIP
17 sseq2 e=vnvnevnvn
18 17 adantl VWvVnVve=vnvnevnvn
19 ssidd VWvVnVvvnvn
20 16 18 19 rspcedvd VWvVnVveranIPvne