Metamath Proof Explorer


Theorem cvgcmpub

Description: An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014)

Ref Expression
Hypotheses cvgcmp.1 Z=M
cvgcmp.2 φNZ
cvgcmp.3 φkZFk
cvgcmp.4 φkZGk
cvgcmpub.5 φseqM+FA
cvgcmpub.6 φseqM+GB
cvgcmpub.7 φkZGkFk
Assertion cvgcmpub φBA

Proof

Step Hyp Ref Expression
1 cvgcmp.1 Z=M
2 cvgcmp.2 φNZ
3 cvgcmp.3 φkZFk
4 cvgcmp.4 φkZGk
5 cvgcmpub.5 φseqM+FA
6 cvgcmpub.6 φseqM+GB
7 cvgcmpub.7 φkZGkFk
8 2 1 eleqtrdi φNM
9 eluzel2 NMM
10 8 9 syl φM
11 1 10 4 serfre φseqM+G:Z
12 11 ffvelcdmda φnZseqM+Gn
13 1 10 3 serfre φseqM+F:Z
14 13 ffvelcdmda φnZseqM+Fn
15 simpr φnZnZ
16 15 1 eleqtrdi φnZnM
17 simpl φnZφ
18 elfzuz kMnkM
19 18 1 eleqtrrdi kMnkZ
20 17 19 4 syl2an φnZkMnGk
21 17 19 3 syl2an φnZkMnFk
22 17 19 7 syl2an φnZkMnGkFk
23 16 20 21 22 serle φnZseqM+GnseqM+Fn
24 1 10 6 5 12 14 23 climle φBA