Metamath Proof Explorer


Theorem cvlatexchb1

Description: A version of cvlexchb1 for atoms. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlatexch.l ˙=K
cvlatexch.j ˙=joinK
cvlatexch.a A=AtomsK
Assertion cvlatexchb1 KCvLatPAQARAPRP˙R˙QR˙P=R˙Q

Proof

Step Hyp Ref Expression
1 cvlatexch.l ˙=K
2 cvlatexch.j ˙=joinK
3 cvlatexch.a A=AtomsK
4 cvlatl KCvLatKAtLat
5 4 adantr KCvLatPAQARAKAtLat
6 simpr1 KCvLatPAQARAPA
7 simpr3 KCvLatPAQARARA
8 1 3 atncmp KAtLatPARA¬P˙RPR
9 5 6 7 8 syl3anc KCvLatPAQARA¬P˙RPR
10 eqid BaseK=BaseK
11 10 3 atbase RARBaseK
12 10 1 2 3 cvlexchb1 KCvLatPAQARBaseK¬P˙RP˙R˙QR˙P=R˙Q
13 12 3expia KCvLatPAQARBaseK¬P˙RP˙R˙QR˙P=R˙Q
14 11 13 syl3anr3 KCvLatPAQARA¬P˙RP˙R˙QR˙P=R˙Q
15 9 14 sylbird KCvLatPAQARAPRP˙R˙QR˙P=R˙Q
16 15 3impia KCvLatPAQARAPRP˙R˙QR˙P=R˙Q