Metamath Proof Explorer


Theorem cvp

Description: The Hilbert lattice satisfies the covering property of Definition 7.4 of MaedaMaeda p. 31 and its converse. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvp ACBHAtomsAB=0AAB

Proof

Step Hyp Ref Expression
1 atelch BHAtomsBC
2 chincl ACBCABC
3 1 2 sylan2 ACBHAtomsABC
4 atcveq0 ABCBHAtomsABBAB=0
5 3 4 sylancom ACBHAtomsABBAB=0
6 cvexch ACBCABBAAB
7 1 6 sylan2 ACBHAtomsABBAAB
8 5 7 bitr3d ACBHAtomsAB=0AAB