Metamath Proof Explorer


Theorem cvr2N

Description: Less-than and covers equivalence in a Hilbert lattice. ( chcv2 analog.) (Contributed by NM, 7-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cvr2.b B=BaseK
cvr2.s <˙=<K
cvr2.j ˙=joinK
cvr2.c C=K
cvr2.a A=AtomsK
Assertion cvr2N KHLXBPAX<˙X˙PXCX˙P

Proof

Step Hyp Ref Expression
1 cvr2.b B=BaseK
2 cvr2.s <˙=<K
3 cvr2.j ˙=joinK
4 cvr2.c C=K
5 cvr2.a A=AtomsK
6 hllat KHLKLat
7 6 3ad2ant1 KHLXBPAKLat
8 simp2 KHLXBPAXB
9 1 5 atbase PAPB
10 9 3ad2ant3 KHLXBPAPB
11 eqid K=K
12 1 11 2 3 latnle KLatXBPB¬PKXX<˙X˙P
13 7 8 10 12 syl3anc KHLXBPA¬PKXX<˙X˙P
14 1 11 3 4 5 cvr1 KHLXBPA¬PKXXCX˙P
15 13 14 bitr3d KHLXBPAX<˙X˙PXCX˙P