Metamath Proof Explorer


Theorem cxplt2

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion cxplt2 A 0 A B 0 B C + A < B A C < B C

Proof

Step Hyp Ref Expression
1 cxple2 B 0 B A 0 A C + B A B C A C
2 1 3com12 A 0 A B 0 B C + B A B C A C
3 2 notbid A 0 A B 0 B C + ¬ B A ¬ B C A C
4 simp1l A 0 A B 0 B C + A
5 simp2l A 0 A B 0 B C + B
6 4 5 ltnled A 0 A B 0 B C + A < B ¬ B A
7 simp1r A 0 A B 0 B C + 0 A
8 rpre C + C
9 8 3ad2ant3 A 0 A B 0 B C + C
10 recxpcl A 0 A C A C
11 4 7 9 10 syl3anc A 0 A B 0 B C + A C
12 simp2r A 0 A B 0 B C + 0 B
13 recxpcl B 0 B C B C
14 5 12 9 13 syl3anc A 0 A B 0 B C + B C
15 11 14 ltnled A 0 A B 0 B C + A C < B C ¬ B C A C
16 3 6 15 3bitr4d A 0 A B 0 B C + A < B A C < B C