Metamath Proof Explorer


Theorem cyc3fv1

Description: Function value of a 3-cycle at the first point. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c C=toCycD
cycpm3.s S=SymGrpD
cycpm3.d φDV
cycpm3.i φID
cycpm3.j φJD
cycpm3.k φKD
cycpm3.1 φIJ
cycpm3.2 φJK
cycpm3.3 φKI
Assertion cyc3fv1 φC⟨“IJK”⟩I=J

Proof

Step Hyp Ref Expression
1 cycpm3.c C=toCycD
2 cycpm3.s S=SymGrpD
3 cycpm3.d φDV
4 cycpm3.i φID
5 cycpm3.j φJD
6 cycpm3.k φKD
7 cycpm3.1 φIJ
8 cycpm3.2 φJK
9 cycpm3.3 φKI
10 4 5 6 s3cld φ⟨“IJK”⟩WordD
11 4 5 6 7 8 9 s3f1 φ⟨“IJK”⟩:dom⟨“IJK”⟩1-1D
12 c0ex 0V
13 12 prid1 001
14 s3len ⟨“IJK”⟩=3
15 14 oveq1i ⟨“IJK”⟩1=31
16 3m1e2 31=2
17 15 16 eqtri ⟨“IJK”⟩1=2
18 17 oveq2i 0..^⟨“IJK”⟩1=0..^2
19 fzo0to2pr 0..^2=01
20 18 19 eqtri 0..^⟨“IJK”⟩1=01
21 13 20 eleqtrri 00..^⟨“IJK”⟩1
22 21 a1i φ00..^⟨“IJK”⟩1
23 1 3 10 11 22 cycpmfv1 φC⟨“IJK”⟩⟨“IJK”⟩0=⟨“IJK”⟩0+1
24 s3fv0 ID⟨“IJK”⟩0=I
25 4 24 syl φ⟨“IJK”⟩0=I
26 25 fveq2d φC⟨“IJK”⟩⟨“IJK”⟩0=C⟨“IJK”⟩I
27 0p1e1 0+1=1
28 27 fveq2i ⟨“IJK”⟩0+1=⟨“IJK”⟩1
29 s3fv1 JD⟨“IJK”⟩1=J
30 5 29 syl φ⟨“IJK”⟩1=J
31 28 30 eqtrid φ⟨“IJK”⟩0+1=J
32 23 26 31 3eqtr3d φC⟨“IJK”⟩I=J