Metamath Proof Explorer


Theorem cycpm3cl

Description: Closure of the 3-cycles in the permutations. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c C=toCycD
cycpm3.s S=SymGrpD
cycpm3.d φDV
cycpm3.i φID
cycpm3.j φJD
cycpm3.k φKD
cycpm3.1 φIJ
cycpm3.2 φJK
cycpm3.3 φKI
Assertion cycpm3cl φC⟨“IJK”⟩BaseS

Proof

Step Hyp Ref Expression
1 cycpm3.c C=toCycD
2 cycpm3.s S=SymGrpD
3 cycpm3.d φDV
4 cycpm3.i φID
5 cycpm3.j φJD
6 cycpm3.k φKD
7 cycpm3.1 φIJ
8 cycpm3.2 φJK
9 cycpm3.3 φKI
10 4 5 6 s3cld φ⟨“IJK”⟩WordD
11 4 5 6 7 8 9 s3f1 φ⟨“IJK”⟩:dom⟨“IJK”⟩1-1D
12 1 3 10 11 2 cycpmcl φC⟨“IJK”⟩BaseS