Metamath Proof Explorer


Theorem cycpm3cl

Description: Closure of the 3-cycles in the permutations. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c C = toCyc D
cycpm3.s S = SymGrp D
cycpm3.d φ D V
cycpm3.i φ I D
cycpm3.j φ J D
cycpm3.k φ K D
cycpm3.1 φ I J
cycpm3.2 φ J K
cycpm3.3 φ K I
Assertion cycpm3cl φ C ⟨“ IJK ”⟩ Base S

Proof

Step Hyp Ref Expression
1 cycpm3.c C = toCyc D
2 cycpm3.s S = SymGrp D
3 cycpm3.d φ D V
4 cycpm3.i φ I D
5 cycpm3.j φ J D
6 cycpm3.k φ K D
7 cycpm3.1 φ I J
8 cycpm3.2 φ J K
9 cycpm3.3 φ K I
10 4 5 6 s3cld φ ⟨“ IJK ”⟩ Word D
11 4 5 6 7 8 9 s3f1 φ ⟨“ IJK ”⟩ : dom ⟨“ IJK ”⟩ 1-1 D
12 1 3 10 11 2 cycpmcl φ C ⟨“ IJK ”⟩ Base S