Metamath Proof Explorer


Theorem cycsubggend

Description: The cyclic subgroup generated by A includes its generator. Although this theorem holds for any class G , the definition of F is only meaningful if G is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses cycsubggend.1 B=BaseG
cycsubggend.2 ·˙=G
cycsubggend.3 F=nn·˙A
cycsubggend.4 φAB
Assertion cycsubggend φAranF

Proof

Step Hyp Ref Expression
1 cycsubggend.1 B=BaseG
2 cycsubggend.2 ·˙=G
3 cycsubggend.3 F=nn·˙A
4 cycsubggend.4 φAB
5 1zzd φ1
6 simpr φn=1n=1
7 6 oveq1d φn=1n·˙A=1·˙A
8 4 adantr φn=1AB
9 1 2 mulg1 AB1·˙A=A
10 8 9 syl φn=11·˙A=A
11 7 10 eqtr2d φn=1A=n·˙A
12 3 5 4 11 elrnmptdv φAranF