Description: The cyclic subgroup generated by A includes its generator. Although this theorem holds for any class G , the definition of F is only meaningful if G is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cycsubggend.1 | |
|
cycsubggend.2 | |
||
cycsubggend.3 | |
||
cycsubggend.4 | |
||
Assertion | cycsubggend | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycsubggend.1 | |
|
2 | cycsubggend.2 | |
|
3 | cycsubggend.3 | |
|
4 | cycsubggend.4 | |
|
5 | 1zzd | |
|
6 | simpr | |
|
7 | 6 | oveq1d | |
8 | 4 | adantr | |
9 | 1 2 | mulg1 | |
10 | 8 9 | syl | |
11 | 7 10 | eqtr2d | |
12 | 3 5 4 11 | elrnmptdv | |