Metamath Proof Explorer


Theorem d0mat2pmat

Description: The transformed empty set as matrix of dimenson 0 is the empty set (i.e., the polynomial matrix of dimension 0). (Contributed by AV, 4-Aug-2019)

Ref Expression
Assertion d0mat2pmat RVmatToPolyMatR=

Proof

Step Hyp Ref Expression
1 0fin Fin
2 id RVRV
3 0ex V
4 3 snid
5 mat0dimbas0 RVBaseMatR=
6 4 5 eleqtrrid RVBaseMatR
7 eqid matToPolyMatR=matToPolyMatR
8 eqid MatR=MatR
9 eqid BaseMatR=BaseMatR
10 eqid Poly1R=Poly1R
11 eqid algScPoly1R=algScPoly1R
12 7 8 9 10 11 mat2pmatval FinRVBaseMatRmatToPolyMatR=x,yalgScPoly1Rxy
13 1 2 6 12 mp3an2i RVmatToPolyMatR=x,yalgScPoly1Rxy
14 mpo0 x,yalgScPoly1Rxy=
15 13 14 eqtrdi RVmatToPolyMatR=