Metamath Proof Explorer


Theorem dalem5

Description: Lemma for dath . Atom U (in plane Z = S T U ) belongs to the 3-dimensional volume formed by Y and C . (Contributed by NM, 21-Jul-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem5.o O=LPlanesK
dalem5.y Y=P˙Q˙R
dalem5.w W=Y˙C
Assertion dalem5 φU˙W

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem5.o O=LPlanesK
6 dalem5.y Y=P˙Q˙R
7 dalem5.w W=Y˙C
8 eqid BaseK=BaseK
9 1 dalemkelat φKLat
10 1 4 dalemueb φUBaseK
11 1 dalemkehl φKHL
12 1 dalemrea φRA
13 1 2 3 4 5 6 dalemcea φCA
14 8 3 4 hlatjcl KHLRACAR˙CBaseK
15 11 12 13 14 syl3anc φR˙CBaseK
16 1 5 dalemyeb φYBaseK
17 1 4 dalemceb φCBaseK
18 8 3 latjcl KLatYBaseKCBaseKY˙CBaseK
19 9 16 17 18 syl3anc φY˙CBaseK
20 7 19 eqeltrid φWBaseK
21 1 dalemclrju φC˙R˙U
22 1 dalemuea φUA
23 1 dalempea φPA
24 simp313 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙R˙P
25 1 24 sylbi φ¬C˙R˙P
26 2 3 4 atnlej1 KHLCARAPA¬C˙R˙PCR
27 11 13 12 23 25 26 syl131anc φCR
28 2 3 4 hlatexch1 KHLCAUARACRC˙R˙UU˙R˙C
29 11 13 22 12 27 28 syl131anc φC˙R˙UU˙R˙C
30 21 29 mpd φU˙R˙C
31 1 3 4 dalempjqeb φP˙QBaseK
32 1 4 dalemreb φRBaseK
33 8 2 3 latlej2 KLatP˙QBaseKRBaseKR˙P˙Q˙R
34 9 31 32 33 syl3anc φR˙P˙Q˙R
35 34 6 breqtrrdi φR˙Y
36 8 2 3 latjlej1 KLatRBaseKYBaseKCBaseKR˙YR˙C˙Y˙C
37 9 32 16 17 36 syl13anc φR˙YR˙C˙Y˙C
38 35 37 mpd φR˙C˙Y˙C
39 38 7 breqtrrdi φR˙C˙W
40 8 2 9 10 15 20 30 39 lattrd φU˙W