Description: Lemma for dath . Atom U (in plane Z = S T U ) belongs to the 3-dimensional volume formed by Y and C . (Contributed by NM, 21-Jul-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalema.ph | |
|
dalemc.l | |
||
dalemc.j | |
||
dalemc.a | |
||
dalem5.o | |
||
dalem5.y | |
||
dalem5.w | |
||
Assertion | dalem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | |
|
2 | dalemc.l | |
|
3 | dalemc.j | |
|
4 | dalemc.a | |
|
5 | dalem5.o | |
|
6 | dalem5.y | |
|
7 | dalem5.w | |
|
8 | eqid | |
|
9 | 1 | dalemkelat | |
10 | 1 4 | dalemueb | |
11 | 1 | dalemkehl | |
12 | 1 | dalemrea | |
13 | 1 2 3 4 5 6 | dalemcea | |
14 | 8 3 4 | hlatjcl | |
15 | 11 12 13 14 | syl3anc | |
16 | 1 5 | dalemyeb | |
17 | 1 4 | dalemceb | |
18 | 8 3 | latjcl | |
19 | 9 16 17 18 | syl3anc | |
20 | 7 19 | eqeltrid | |
21 | 1 | dalemclrju | |
22 | 1 | dalemuea | |
23 | 1 | dalempea | |
24 | simp313 | |
|
25 | 1 24 | sylbi | |
26 | 2 3 4 | atnlej1 | |
27 | 11 13 12 23 25 26 | syl131anc | |
28 | 2 3 4 | hlatexch1 | |
29 | 11 13 22 12 27 28 | syl131anc | |
30 | 21 29 | mpd | |
31 | 1 3 4 | dalempjqeb | |
32 | 1 4 | dalemreb | |
33 | 8 2 3 | latlej2 | |
34 | 9 31 32 33 | syl3anc | |
35 | 34 6 | breqtrrdi | |
36 | 8 2 3 | latjlej1 | |
37 | 9 32 16 17 36 | syl13anc | |
38 | 35 37 | mpd | |
39 | 38 7 | breqtrrdi | |
40 | 8 2 9 10 15 20 30 39 | lattrd | |