Metamath Proof Explorer


Theorem dchrf

Description: A Dirichlet character is a function. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G=DChrN
dchrmhm.z Z=/N
dchrmhm.b D=BaseG
dchrf.b B=BaseZ
dchrf.x φXD
Assertion dchrf φX:B

Proof

Step Hyp Ref Expression
1 dchrmhm.g G=DChrN
2 dchrmhm.z Z=/N
3 dchrmhm.b D=BaseG
4 dchrf.b B=BaseZ
5 dchrf.x φXD
6 eqid UnitZ=UnitZ
7 1 3 dchrrcl XDN
8 5 7 syl φN
9 1 2 4 6 8 3 dchrelbas3 φXDX:BxUnitZyUnitZXxZy=XxXyX1Z=1xBXx0xUnitZ
10 5 9 mpbid φX:BxUnitZyUnitZXxZy=XxXyX1Z=1xBXx0xUnitZ
11 10 simpld φX:B